HOME> 世界杯收视率> 各种坐标系下的散度、梯度、旋度公式

各种坐标系下的散度、梯度、旋度公式

引言

本文介绍了散度、梯度和旋度在直角坐标系、柱坐标系和球坐标系三种常见坐标系下的表示。记录一下,具体可以利用梅拉系数进行推导。

谨记: 梯度:标量求梯度得到矢量。 散度:矢量求散度得到标量。 旋度:矢量求旋度得到矢量。

1.直角坐标系

标量表示

f

=

f

(

x

,

y

,

z

)

f=f(x,y,z)

f=f(x,y,z)

矢量表示

f

=

f

x

e

x

+

f

y

e

y

+

f

z

e

z

\mathbf{\overrightarrow{f}}=f_x\mathbf{\overrightarrow{e_x}}+f_y\mathbf{\overrightarrow{e_y}}+f_z\mathbf{\overrightarrow{e_z}}

f

=fx​ex​

​+fy​ey​

​+fz​ez​

梯度:

f

=

f

x

e

x

+

f

y

e

y

+

f

z

e

z

\bigtriangledown {f}=\frac{\partial f}{\partial x}\mathbf{\overrightarrow{e_x}}+\frac{\partial f}{\partial y}\mathbf{\overrightarrow{e_y}}+\frac{\partial f}{\partial z}\mathbf{\overrightarrow{e_z}}

▽f=∂x∂f​ex​

​+∂y∂f​ey​

​+∂z∂f​ez​

散度:

f

=

f

x

x

+

f

y

y

+

f

z

z

\bigtriangledown \cdot \mathbf{\overrightarrow{f}}=\frac{\partial f_x}{\partial x}+\frac{\partial f_y}{\partial y}+\frac{\partial f_z}{\partial z}

▽⋅f

=∂x∂fx​​+∂y∂fy​​+∂z∂fz​​

旋度:

×

f

=

[

e

x

e

y

e

z

x

y

z

f

x

f

y

f

z

]

=

(

f

z

y

f

y

z

)

e

x

+

(

f

x

z

f

z

x

)

e

y

+

(

f

y

x

f

x

y

)

e

z

\begin{aligned} \bigtriangledown \times \mathbf{\overrightarrow{f}}&= \begin{bmatrix} \mathbf{\overrightarrow{e_x}} &\mathbf{\overrightarrow{e_y}} &\mathbf{\overrightarrow{e_z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\f_x & f_y & f_z\end{bmatrix}\\&=(\frac{\partial f_z}{\partial y}-\frac{\partial f_y}{\partial z})\mathbf{\overrightarrow{e_x}}+(\frac{\partial f_x}{\partial z}-\frac{\partial f_z}{\partial x})\mathbf{\overrightarrow{e_y}}+(\frac{\partial f_y}{\partial x}-\frac{\partial f_x}{\partial y})\mathbf{\overrightarrow{e_z}} \end{aligned}

▽×f

​=⎣⎡​ex​

​∂x∂​fx​​ey​

​∂y∂​fy​​ez​

​∂z∂​fz​​⎦⎤​=(∂y∂fz​​−∂z∂fy​​)ex​

​+(∂z∂fx​​−∂x∂fz​​)ey​

​+(∂x∂fy​​−∂y∂fx​​)ez​

​​

2.柱坐标系

标量表示

f

=

f

(

ρ

,

θ

,

z

)

f=f(\rho,\theta,z)

f=f(ρ,θ,z)

矢量表示

f

=

f

ρ

e

ρ

+

f

θ

e

θ

+

f

z

e

z

\mathbf{\overrightarrow{f}}=f_\rho\mathbf{\overrightarrow{e_\rho}}+f_\theta\mathbf{\overrightarrow{e_\theta}}+f_z\mathbf{\overrightarrow{e_z}}

f

=fρ​eρ​

​+fθ​eθ​

​+fz​ez​

梯度:

f

=

f

ρ

e

ρ

+

1

ρ

f

θ

e

θ

+

f

z

e

z

\bigtriangledown {f} =\frac{\partial f}{\partial \rho}\mathbf{\overrightarrow{e_\rho}}+\frac{1}{\rho}\frac{\partial f}{\partial \theta}\mathbf{\overrightarrow{e_\theta}}+\frac{\partial f}{\partial z}\mathbf{\overrightarrow{e_z}}

▽f=∂ρ∂f​eρ​

​+ρ1​∂θ∂f​eθ​

​+∂z∂f​ez​

散度:

f

=

1

ρ

(

ρ

f

ρ

)

ρ

+

1

ρ

f

θ

θ

+

f

z

z

\bigtriangledown \cdot \mathbf{\overrightarrow{f}}=\frac{1}{\rho}\frac{\partial (\rho f_\rho)}{\partial \rho}+\frac{1}{\rho}\frac{\partial f_\theta}{\partial \theta}+\frac{\partial f_z}{\partial z}

▽⋅f

=ρ1​∂ρ∂(ρfρ​)​+ρ1​∂θ∂fθ​​+∂z∂fz​​

旋度:

×

f

=

1

ρ

[

e

ρ

ρ

e

θ

e

z

ρ

θ

z

f

ρ

ρ

f

θ

f

z

]

=

1

ρ

[

(

f

z

θ

(

ρ

f

θ

)

z

)

e

ρ

+

(

f

ρ

z

f

z

ρ

)

ρ

e

θ

+

(

(

ρ

f

θ

)

ρ

f

ρ

θ

)

e

z

]

\begin{aligned} \bigtriangledown \times \mathbf{\overrightarrow{f}}&=\frac{1}{\rho} \begin{bmatrix} \mathbf{\overrightarrow{e_\rho}} &\rho\mathbf{\overrightarrow{e_\theta}} &\mathbf{\overrightarrow{e_z}} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\f_\rho & \rho f_\theta & f_z\end{bmatrix}\\&=\frac{1}{\rho}\left[(\frac{\partial f_z}{\partial \theta}-\frac{\partial (\rho f_\theta)}{\partial z})\mathbf{\overrightarrow{e_\rho}}+(\frac{\partial f_\rho}{\partial z}-\frac{\partial f_z}{\partial \rho})\rho\mathbf{\overrightarrow{e_\theta}}+(\frac{\partial (\rho f_\theta)}{\partial \rho}-\frac{\partial f_\rho}{\partial \theta})\mathbf{\overrightarrow{e_z}}\right] \end{aligned}

▽×f

​=ρ1​⎣⎡​eρ​

​∂ρ∂​fρ​​ρeθ​

​∂θ∂​ρfθ​​ez​

​∂z∂​fz​​⎦⎤​=ρ1​[(∂θ∂fz​​−∂z∂(ρfθ​)​)eρ​

​+(∂z∂fρ​​−∂ρ∂fz​​)ρeθ​

​+(∂ρ∂(ρfθ​)​−∂θ∂fρ​​)ez​

​]​

3.球坐标系

(请注意这里的

θ

\theta

θ和柱坐标系中的

θ

\theta

θ的定义不同,详细见图)

标量表示

f

=

f

(

ρ

,

θ

,

ϕ

)

f=f(\rho,\theta,\phi)

f=f(ρ,θ,ϕ)

矢量表示

f

=

f

ρ

e

ρ

+

f

θ

e

θ

+

f

ϕ

e

ϕ

\mathbf{\overrightarrow{f}}=f_\rho\mathbf{\overrightarrow{e_\rho}}+f_\theta\mathbf{\overrightarrow{e_\theta}}+f_\phi\mathbf{\overrightarrow{e_\phi}}

f

=fρ​eρ​

​+fθ​eθ​

​+fϕ​eϕ​

梯度:

f

=

f

ρ

e

ρ

+

1

ρ

f

θ

e

θ

+

1

ρ

s

i

n

θ

f

ϕ

e

ϕ

\bigtriangledown {f} =\frac{\partial f}{\partial \rho}\mathbf{\overrightarrow{e_\rho}}+\frac{1}{\rho}\frac{\partial f}{\partial \theta}\mathbf{\overrightarrow{e_\theta}}+\frac{1}{\rho sin\theta}\frac{\partial f}{\partial \phi}\mathbf{\overrightarrow{e_\phi}}

▽f=∂ρ∂f​eρ​

​+ρ1​∂θ∂f​eθ​

​+ρsinθ1​∂ϕ∂f​eϕ​

散度:

f

=

1

ρ

2

(

ρ

2

f

ρ

)

ρ

+

1

ρ

s

i

n

θ

(

s

i

n

θ

f

θ

)

θ

+

1

ρ

s

i

n

θ

f

ϕ

ϕ

\bigtriangledown \cdot \mathbf{\overrightarrow{f}}=\frac{1}{\rho^2}\frac{\partial (\rho^2 f_\rho)}{\partial \rho}+\frac{1}{\rho sin\theta}\frac{\partial (sin\theta f_\theta)}{\partial \theta}+\frac{1}{\rho sin\theta}\frac{\partial f_\phi}{\partial \phi}

▽⋅f

=ρ21​∂ρ∂(ρ2fρ​)​+ρsinθ1​∂θ∂(sinθfθ​)​+ρsinθ1​∂ϕ∂fϕ​​

旋度:

×

f

=

1

ρ

2

s

i

n

θ

[

e

ρ

ρ

e

θ

ρ

s

i

n

θ

e

ϕ

ρ

θ

ϕ

f

ρ

ρ

f

θ

ρ

s

i

n

θ

f

ϕ

]

=

1

ρ

2

s

i

n

θ

[

(

(

ρ

s

i

n

θ

f

ϕ

)

θ

(

ρ

f

θ

)

ϕ

)

e

ρ

+

(

f

ρ

ϕ

(

ρ

s

i

n

θ

f

ϕ

)

ρ

)

ρ

e

θ

+

(

(

ρ

f

θ

)

ρ

f

ρ

θ

)

ρ

s

i

n

θ

e

ϕ

]

\begin{aligned} \bigtriangledown \times \mathbf{\overrightarrow{f}}&=\frac{1}{\rho^2sin\theta} \begin{bmatrix} \mathbf{\overrightarrow{e_\rho}} &\rho\mathbf{\overrightarrow{e_\theta}} &\rho sin\theta\mathbf{\overrightarrow{e_\phi}} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\f_\rho & \rho f_\theta & \rho sin\theta f_\phi\end{bmatrix}\\&=\frac{1}{\rho^2sin\theta}\left[(\frac{\partial (\rho sin\theta f_\phi)}{\partial \theta}-\frac{\partial (\rho f_\theta)}{\partial \phi})\mathbf{\overrightarrow{e_\rho}}+(\frac{\partial f_\rho}{\partial \phi}-\frac{\partial (\rho sin\theta f_\phi)}{\partial \rho})\rho\mathbf{\overrightarrow{e_\theta}}+(\frac{\partial (\rho f_\theta)}{\partial \rho}-\frac{\partial f_\rho}{\partial \theta})\rho sin\theta \mathbf{\overrightarrow{e_\phi}}\right] \end{aligned}

▽×f

​=ρ2sinθ1​⎣⎡​eρ​

​∂ρ∂​fρ​​ρeθ​

​∂θ∂​ρfθ​​ρsinθeϕ​

​∂ϕ∂​ρsinθfϕ​​⎦⎤​=ρ2sinθ1​[(∂θ∂(ρsinθfϕ​)​−∂ϕ∂(ρfθ​)​)eρ​

​+(∂ϕ∂fρ​​−∂ρ∂(ρsinθfϕ​)​)ρeθ​

​+(∂ρ∂(ρfθ​)​−∂θ∂fρ​​)ρsinθeϕ​

​]​

由于笔者之前一直想不清楚柱坐标系和球坐标系下三度的变换,于是查阅资料,其中发现[1]是极好的,推荐一看!!!详细推导见下面的参考资料[1],利用梅拉系数很容易地可以进行推导,利用拉梅系数还可以很直接地推导了斯托克斯公式和高斯公式,非常地简单易懂!!感谢知乎@弧长长长长长。另外[2]写得也比较详细,可以用作其他的参考。

[1] 浅谈:拉梅系数那些事儿 [2] 柱面及球面坐标系中散度、旋度的应用

附:

1.常用的梅拉系数

直角坐标系:

H

x

=

1

,

H

y

=

1

,

H

z

=

1

H_x=1,H_y=1,H_z=1

Hx​=1,Hy​=1,Hz​=1

柱坐标系:

H

r

=

1

,

H

θ

=

r

,

H

z

=

1

H_r=1,H_\theta=r,H_z=1

Hr​=1,Hθ​=r,Hz​=1

球坐标系:

H

r

=

1

,

H

θ

=

r

,

H

ϕ

=

r

s

i

n

θ

H_r=1,H_\theta=r,H_\phi=rsin\theta

Hr​=1,Hθ​=r,Hϕ​=rsinθ

2.通用公式

梯度:

f

=

1

H

1

f

q

1

e

1

+

1

H

2

f

q

2

e

2

+

1

H

3

f

q

3

e

3

\bigtriangledown f=\frac{1}{H_{1}} \frac{\partial f}{\partial q_{1}} \mathbf{\overrightarrow{e_1}}+\frac{1}{H_{2}} \frac{\partial f}{\partial q_{2}} \mathbf{\overrightarrow{e_2}}+\frac{1}{H_{3}} \frac{\partial f}{\partial q_{3}} \mathbf{\overrightarrow{e_3}}

▽f=H1​1​∂q1​∂f​e1​

​+H2​1​∂q2​∂f​e2​

​+H3​1​∂q3​∂f​e3​

散度:

div

r

=

lim

V

0

S

r

i

d

S

V

=

1

H

1

H

2

H

3

(

(

r

1

H

2

H

3

)

q

1

+

(

r

2

H

1

H

3

)

q

2

+

(

r

3

H

2

H

1

)

q

3

)

\operatorname{div} \boldsymbol{r}=\lim _{V \rightarrow 0} \frac{\oint_{S} r_{i} d S}{V}=\frac{1}{H_{1} H_{2} H_{3}}\left(\frac{\partial\left(r_{1} H_{2} H_{3}\right)}{\partial q_{1}}+\frac{\partial\left(r_{2} H_{1} H_{3}\right)}{\partial q_{2}}+\frac{\partial\left(r_{3} H_{2} H_{1}\right)}{\partial q_{3}}\right)

divr=V→0lim​V∮S​ri​dS​=H1​H2​H3​1​(∂q1​∂(r1​H2​H3​)​+∂q2​∂(r2​H1​H3​)​+∂q3​∂(r3​H2​H1​)​)

旋度:

{

rot

q

1

r

=

1

H

2

H

3

[

(

r

3

H

3

)

q

2

(

r

2

H

2

)

q

3

]

rot

q

2

r

=

1

H

1

H

3

[

(

r

1

H

1

)

q

3

(

r

3

H

3

)

q

1

]

rot

q

3

r

=

1

H

2

H

1

[

(

r

2

H

2

)

q

1

(

r

1

H

1

)

q

2

]

\left\{\begin{array}{l} \operatorname{rot}_{q_{1}} \boldsymbol{r}=\frac{1}{H_{2} H_{3}}\left[\frac{\partial\left(r_{3} H_{3}\right)}{\partial q_{2}}-\frac{\partial\left(r_{2} H_{2}\right)}{\partial q_{3}}\right] \\ \operatorname{rot}_{q_{2}} \boldsymbol{r}=\frac{1}{H_{1} H_{3}}\left[\frac{\partial\left(r_{1} H_{1}\right)}{\partial q_{3}}-\frac{\partial\left(r_{3} H_{3}\right)}{\partial q_{1}}\right] \\ \operatorname{rot}_{q_{3}} \boldsymbol{r}=\frac{1}{H_{2} H_{1}}\left[\frac{\partial\left(r_{2} H_{2}\right)}{\partial q_{1}}-\frac{\partial\left(r_{1} H_{1}\right)}{\partial q_{2}}\right] \end{array}\right.

⎩⎪⎪⎪⎨⎪⎪⎪⎧​rotq1​​r=H2​H3​1​[∂q2​∂(r3​H3​)​−∂q3​∂(r2​H2​)​]rotq2​​r=H1​H3​1​[∂q3​∂(r1​H1​)​−∂q1​∂(r3​H3​)​]rotq3​​r=H2​H1​1​[∂q1​∂(r2​H2​)​−∂q2​∂(r1​H1​)​]​ 或

rot

r

=

1

H

1

H

2

H

3

H

1

e

1

H

2

e

2

H

3

e

3

q

1

q

2

q

3

H

1

r

1

H

2

r

2

H

3

r

3

\operatorname{rot} \boldsymbol{r}=\frac{1}{H_{1} H_{2} H_{3}}\left|\begin{array}{ccc} H_{1} \boldsymbol{e}_{1} & H_{2} \boldsymbol{e}_{2} & H_{3} \boldsymbol{e}_{3} \\ \frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\ H_{1} r_{1} & H_{2} r_{2} & H_{3} r_{3} \end{array}\right|

rotr=H1​H2​H3​1​∣∣∣∣∣∣​H1​e1​∂q1​∂​H1​r1​​H2​e2​∂q2​∂​H2​r2​​H3​e3​∂q3​∂​H3​r3​​∣∣∣∣∣∣​